
NUMBERS AND INSTRUCTIONS

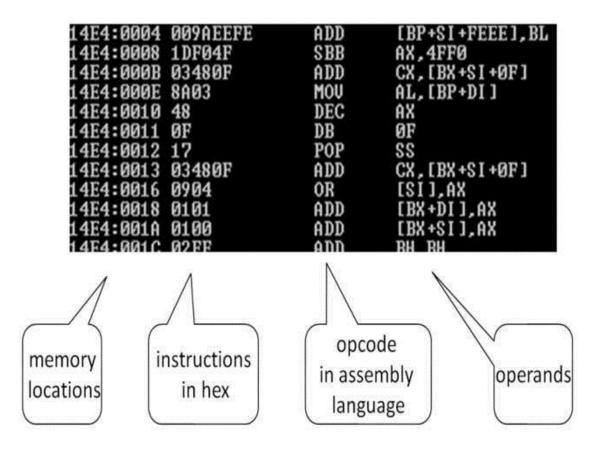
By Olmo Gordon and Dario von Muenchhausen

INSTRUCTION SET OF A CPU

- Each processor type has a limit of how many instructions it can carry out at once (instruction set)
- Instructions are:
 - Changing data
 - Moving data
 - Controlling data flow

TYPES OF INSTRUCTIONS

Arithmetic operations	Logical operations
Plus	Comparisons
Minus	AND, OR, NOT (bitwise operators)
Multiply	They Change the bits in a byte
Divide	


PROCESS OF INSTRUCTIONS

- Computer gets instructed to run a program
- Directed to the start address of the data and instructions
- CPU fetches the first instruction from the start location
- Then it decodes it to find out what to do next

OPERATOR AND OPERAND

Operator	Operand
Instruction part	Data part
ADD to the accumulator	The contents of memory location
First 4 numbers	Last 4 numbers

HOW INSTRUCTIONS ARE SET

BINARY

- The binary system (a.k.a base-2 system) uses a bit (most basic unit of information in a computer) that:
 - Can either be "on" (1) or "off" (0).
 - Represent high or low voltage in a circuit.
 - Form bytes (group of eight bits, formed by two nibbles). It is the smallest possible addressable unit of computer storage.
- A word is a group of bytes.
 - Words size for a processor is a multiple of bytes (commonly 16, 32, or 64 bits).

There are only 10 types of people in the world: Those who understand binary and those who don'

HEXADECIMAL

- Programmers often use hexadecimal (hex) form because:
 - "Simplification" of base-2 because each digit represent nibble.
 - Useful for colour representation.
 - Shorthand for binary numbers.
 - Easier to remember and recognize.
 - Saves effort and reduces mistakes.
- This number system is base-16, a.k.a 16 different digits:

Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Hexadecimal	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F

© Fach column is worth 16 times the one on its right

	VE	R	7 7	. /	/V

	128	64	32	16	8	4	2	1		
8 bit binary digit	1	0	1	1	0	0	0	1		
	128 + 32 + 16 + 1 = 177									

Convert and interchange between al three systems.

- Different methods:
 - Repeated division.
 - Multiplication and addition.
 - Nibble trick.

Binary	1	1	1	1	0	0	1	1	
Hex			F					3	

135	÷ 2	67	Remainder	1
67	÷ 2	33	Remainder	1
33	÷ 2	16	Remainder	1
16	÷ 2	8	Remainder	0
8	÷ 2	4	Remainder	0
4	÷ 2	2	Remainder	0
2	÷ 2	1	Remainder	0
1	÷ 2	0	Remainder	1

Thank you for your attention!

